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Abstract—A mathematical study of radial matrix and interface cracking in the transverse direction
of fiber-reinforced composites is presented. Two basic sttuations are considered : a radial crack in
front of a circular fiber in an infinite matrix and an arc-shaped crack at the fiber/matrix interface.
The first casc is treated numerically using Erdogan’s integral equation technique. whereas the second
case allows for an analytical solution on the basis of the complex function method as developed by
Muskhelishvili -Kolosov. In both cases the stress intensity factors are calculated for the full range
of Dundurs’ parameters.

1. INTRODUCTION

It is known that the strength of metals and the toughness of ceramics as well as other
mechanical propertics of ductile or brittle materials can greatly be improved by the addition
of fibrous reinforcements. However, the transverse propertics of such fiber-reinforced com-
posites (FRCs) are often still an order of magnitude below the axial ones.

Thermal mismatch between the fiber and the surrounding matrix can lead to further
degradation of the mechanical properties of the composite, During cooling from elevated
processing temperatures down to room temperatures high thermal stresses develop in the
vicinity of the fiber/matrix interface. If the stresses are tensile they will lead to matrix
cracking or interface separation; if they are compressive they exert a stabilizing pressure
on the fiber/matrix interface or in the matrix, unless they are counterbalanced and annihil-
ated by an external tension.

This paper presents a mathematical study of radial matrix and interface cracking in
transverse direction under the influence of thermal and mechanical loads. The following
two basic situations are considered : a radial matrix crack (r-crack) in front of a single,
circular fiber in an infinite matrix, and an arc-shaped crack (3-crack) at the fiber/matrix
interface. In both cases the thermal expansion and the elastic coefficients of the fiber and
the matrix are assumed to be different and the matrix is loaded at infinity transversely to
the fiber. The r-crack is simulated by a continuous distribution of dislocations which can be
determined from a numerical solution of singular integral equations using an approach
suggested by Erdogan et al. (1973, 1974, 1975). This distribution allows us to calculate the
stress intensity factors at both crack tips. The 3-crack is analyzed using the complex function
technique developed by Muskhelishvili-Kolosov (1953).

As has been shown by Miiller ¢r al. (in preparation (a)), the interaction between
neighboring fibers and its influence on the stress distribution of the system can be neglected
for fiber volume fractions up to 40%. Thus a single fiber model should describe r and 3-
cracking reliably in FRCs with low or medium fiber volume content. Finally it should be
mentioned that plasticity has not been taken into account: matrix as well as interface
cracking is assumed to occur within the elastic deformation regime.
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2. CALCULATION OF STRESS INTENSITY FACTORS OF r-CRACKS

2 1. Formudation of the problem

Consider the plane elastic system shown in Fig. 1. An elastic matnix, to which a uniaxial
tension o ¥, = o is applied at infinity, contains a single fiber of radius R. The elastic constants
of the matrix and the fiber are denoted by (y1,. x,) and (u.. x-). respectively, where g, s the
shear modulus and w, = 3 —4v; (plane strain), and ~, = (3—v)/ (1 +v) (planc stress) is
Muskhelishvili's constant, v, being Poisson’s ratio, / = 1. 2. The corresponding thermal
expansion coeflicients are %, and x.. respectively.

We consider a radial matrix crack in front of the fiber perpendicular to the external
stress field o 7,. This arrangement is one of the most dangerous situations possible and we
shall restrict ourselves to this case from now on.

In a series of papers Erdogan er al. (1973, 1974, 1975) have explained how to treat such
problems mathematically. They simulate the crack by a continuous but unknown array of
edge dislocations f{¢). which can be determined from the fact that the flanks of a crack
must be free of forces. Since cach dislocation leads to stresses along the flanks of the fictitious
crack. f{¢) must be chosen such that the stresses from these contributions counterbalance the
external loads in the undamaged material.

The mathematical analysis of this problem leads to a singular integral equation for the
unknown distribution f{1), which, in general, must be solved numerically.

2.2, The integral equation
The integral equation of the above-mentioned problem reads:

oo ~h l+ .
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Fig. 1. Geometry of an r-crack near a fiber - matrix interface.
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For a detailed derivation of this equation the reader is referred to Erdogan er al. (1974,
1975). Here we shall only summarize the results.
k., and k, denote the following integral kernels:

1 +B°s  B-a a\s _25
ki,.(.\'.()=t—:}{ ﬂ 2—-+l+ﬁ‘-(35 R)(l I>}
ﬂ"‘ {(I_“_S)S(S:"'R:)_S](S:'“R:):}
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where the following contractions have been used:

I mix, + 1) —(x,+1) m(k;—1) = (r2—1)
s=0 m=-= = =

= = . {3
i x mik,+ D+ (k. + 1) m{k,+ D+ (o + 1) )

z and f are Dundurs’ parameters (Dundurs, 1969), which have proven to be extremely
useful for the characterization of elastically mismatched composites. Note that &, may
become singular if the “a”-tip of the crack ends at the fiber, whereas &, remains finite under
these conditions.

[n order to provide a unique solution of egn (1) it is necessary to impose an additional
condition which, physically speaking, is the continuity of displucements:

J()yde=0. 4)

«@

The right-hand side of (1) contains the distribution of forces alongside the crack flanks
in the undamaged material. We obtain for uniaxial mechanical and thermal loading
(Muskhelishvili, 1953 ; Miiller er al., in preparation (a)):

] R? B 3 R4 a—f} R’ At +2)
”(“)‘“{"x” +2=2f 25 1+ Plvaz2pf ©
where p is given by :
2 1+
“ﬂ‘l{(*ﬁj M) = {(1+v)ay= (I +v)a, (T—Ty), planestrain
Jﬂ‘.’{(_;_i‘)[ s—a J(T=Th). plane stress.

Tx denotes the fabrication temperature of the composite. Note that p is a measure of the
relative strength of the thermal stresses when compared to the external mechanical loads.
Negative values of p correspond to a composite in which the thermal expansion coefficient
of the fiber is greater than that of the matrix. Consequently, negative values of p characterize
compressive tangential stresses on the surface of the r-crack and vice versa.

2.3. Stress intensity factors
In order to calculate stress intensity factors, f(1) is separated into a singular and into
a non-singular part, the latter of which is called F(s):
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f)y=Fuyb—n""'(t—a) '°. (

~4
—

Note that a separation like this holds only for the case of cracks which do not terminate at
the interface. The equations for a terminating crack have been discussed by Miller er af.
{In preparation (b)).

Consequently, with the definitions (Erdogan and Gupta. 1973):

A RITT § ey
Kby = —-===2" " him[h—x]' £ ().
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X
I

the following expressions can be derived for the SIFs of r-cracks which do not terminate
at the interface:

K(h 2u, \/271 Fib
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2.4. Numerical solution of the integral equation
We introduce the following dimensionless central crack coordinates (X, 7) :

N=I8+L,  t=H+1, (10)
where

. h+a b—u

i=x-—-1L, I=1—~L = 5, lswf» {in

With the definitions :

o ="
2u, |
= e Py
MO =750y
w(l) =(1—-0) "@F+1D e (12)
r o if ¢ #0,
..?_'f.‘..‘_, [(t4+vy)ay,—(1+v)x, J{T—Tg), planestrain
L= Y K+ o . e .
, if g =0,
i [2: =2, (T~ Te) plane stress
o+

.

the following dimensionless integral equation is obtained :
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+1

h(E)w(T)df = 0.
i

> 1 . -1
J k(f)“fl’) dr+ f E(e. D +K (LD AW Al = —np(F). j
-1 -X -1 _
(13)
Following the Gauss—Jacobi integration technique of Erdogan et al. (1973) this equation

can be mapped onto a system of linear equations for the unknown function A(t) which is
evaluated at the zeros of Chebyshev polynomials:

Al 1 _ o )
Z h({k) W’k {{—_f’ +E,(f/. fk)+k/‘(.€,. rk)} = —Ttp(x, ), j = l, “ .IV“"‘ ],
k=1 kT -vj
¥
S h(E)We =0, (14)
k=1

with £, x; from:

k-1
{1‘ = C0s (7{ “T)K{“"'). k= 1....,1V. (kS)
n J .
x,=cos(1rN), J=1. . N~ (16)

Thus for an r-crack which docs not terminate at the interface, the SIFs of eqn (9) can be
approximated by :

Kb 1k I
z\’/(;’k: 4;(:,)\/R, Z\‘(/‘:fk(zv)\/‘q. an

Note that as in the paper by Lu er al. (1990) the results are normalized with respect to the
particle radius R and not with respect to the crack length /. This method of normalization
has proven to be especially effective since the particle size is normally kept constant.

2.5. Results und discussion

This section presents some numerical data for the SIFs of r-cracks which do not
terminate at the interface and which are either subject to purely thermal stresses (Section
2.5.1) or to a combination of thermal loading and uniaxial tension at infinity (Section 2.5.2).
For further loading combinations and an extensive discussion of the case of a crack
terminating at the interface, sce the paper by Miiller ef al. (in preparation (b)).

2.5.1. Thermatl stresses. Figure 2u-¢ shows a systematic study of the influence of
Dundurs’ parameters a and f§ on the SIFs of an r-crack of length I'R = 1. As expected, the
stress intensity K(b) at the remote crack tip b decreases monotonically as a function of
increasing distance d/R. K(b) increases slightly in magnitude for increasing Dundurs’
parameters, However, the stress intensities K(a) at crack tip “«¢” show a behavior which
is less uniform. For distances /R where the a-tip comes very close to the fiber
(0.001 < d/R < 0.1) the normalized SIFs increase for positive x-values with increasing d/ R,
while they decrease for negative 2. The curves for positive « show a maximum around
d/R = 0.1. Beyond d/R = 0.1 all curves decrease monotonically, their slopes being a function
of a and f. Increasing ff-values lead to a slight increase of the maximum.

2.5.2. Combined thermal and uniaxial mechanical loading. A systematic study of crack
shielding due to thermal stresses is shown in the sequence of Fig. 3 for different values of
Dundurs’ parameters. Depending upon the compressive (p < 0) or tensile nature (p > 0)
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Fig. 2. Normalized thermal SIFs for remote r-cracks (//R = 1) at various distances d'R from the
interface and for different Dundurs’ parameters.



Radial matrix and interface cracking 1913

I T T ITTTITT v 1 YYYTTII T LR ILERA I IR SLREAA

4

¥
>
o 0 ]
5
] —
0 4
s 1
-5 1
(a) 1 1 lllllll 1 1 1111111 1 1 111_1111 J
.00t 01 N 1 10
d/R
T T I1IIII‘ T lllIYIr]’ T ITlllllr T T T TTTaT
I/R=1 a=06, g=0.15 -
5
<
e 0
-5 |~ —
(b) 1 1 llllll[ l 1 ILlilll 1 1 lLlllll 1 1.1 Ltil
.001 .0l B! 1 10
d/R
‘0 T T r«rrrrf T T IY(I”] !jTIKHT]— T T 7T TITT
- 1/R=1 a=-06, =-0.15 -
- .
5
o
0
(c) 1 1 1 llllll 1 1 lJ_lllll 11! llllll 11 t1 lLL}
.001 .01 1 1 10
d/R

Fig. 3. Normalized SIFs for r-cracks under combined loading at various distances d/R (I/R = 1).
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of the thermal stresses. the SIFs either decrease or increase when compared to the case of
vanishing thermal mismatch (p = 0).

3. CALCULATION OF STRESS INTENSITY FACTORS OF 3-CRACKS

3.1, Description of the problem

Consider the plane elastic system shown in Fig. 4. An elastic matrix. to which biaxial
tensions N, V. are applied at infinity. contains a single, circular fiber of radius R. The
angle of inclination between V, and the real v-axis is called . Along the interface between
the fiber and the matrix a circular-arc-shaped crack is oriented such that it subtends an
angle of 27 symmetrically with respect to the positive x-axis. Furthermore, the crack is
subject to an internal pressure p.

3.2. The boundury conditions
The followed first set of boundary conditions holds along the cracked part L, and the

bonded part Ly, of the interface, respectively :

3 e b

G, +id,; = —p

. s ! onl.,

al, ‘o, = —p

- Dol

a, +io)y =6, +ia),

. : T onlky, {8

t, + 1, = u; g

gl oty i = 1.2 arc the stress components in polar coordinates of the matrix region | and
the region covered by the circular inclusion 2, respectively. wy and wg, i = 1, 2, denote the
corresponding displacements.
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Fig. 4. A pressurized crack at the interfuce between an clastically and thermally mismatched matrix
and circular incluston under the influence of external stresses.
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Furthermore, we demand that there is no rotation at infinity, that all stresses remain
finite as |z} — 0 and that all stresses tend towards N, and N, as |z} — x. This forms the
second set of boundary conditions.

3.3. The Muskhelishvili-Kolosor equations for thermal stress problems

Stresses and displacements in mechanically loaded. isothermal systems can be deter-
mined from the following set of generalized Muskhelishvili-Kolosov equations (Bogdanoff,
1954):

6ir+0§}.'i = 4{9:(:)+Q:(5}}- 9
ol +icly =2 {QZ(Z) +Q(H - - ;077(5)}» (20)
polul +ih) = e K QD) = (D) - B (D + Az 2n

Q,() and w((z), i = 1, 2 are the well-known Goursat functions of two-dimenstonal elasticity
(cf. e.g. Muskhelishvili, 1953) with:

Ay = HE(T—Tp).

(14+v)x. planestrain,
g = (22)

%, plane stress.

3.4. Determination of the stress functions

A close inspection (cf. Miiller er af., in preparation (¢) ; or England, 1966, for details)
of the first sct of boundary conditions (18) shows that it is sufficient to determine only two
complex tunctions ¥’'(z) and @(z). which in terms of the four functions Q,(z), w' (), Q:(2)
and w%(z) are defined as follows

O(2) = Q,(z) - =0, (li)—u} (3;), -eS,,

R!
o) = Qz(z)“-TQ'l ( )'(1—)]

-

R
W(z) = pyc,ﬂ,(:)-l»;z;:ﬂ}( ~_~>+,u3).,:-v@'(:). rel,

R2 2
W(2) = K 05(2) + 128y, ( ')'*‘#205'1 (R )+,u.}.2:—-v@'(:), zel, 23)

where the following contractions were used :

T (e o) .

n= 1+4° I+

Furthermore, it can be shown (Miiller ef al., in preparation (c) ; England, 1966) that these
two functions must satisfy the following functional equations on L,:

O7(E =07, WTE+HnVTE) = = M+ pak)p+ (k). (25)

Note, that the indices * + " and ** — " refer to the limit values of the corresponding functions
approaching L, from | and 2, respectively.

According to Muskhelishvili (1953) these equations have the following general
solution:
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, A, A, A,
O(:):‘4"":’"+“.+A~—l:‘+A‘)+‘_‘_‘+ -.‘-++ jrv
.{ ) dt
Yiz) = [— +uw s + N ‘ -
(‘u! “' ‘} (‘u f +r’}ui/ J = ‘ wi XU ({}("—
i B, B, B,
+X() )+ S+ o +By+B 2+ +B (26)
where Y,(z) denotes the Plemelj function:
. . . -—Re l
" e f - my- 82 ra gy - b2 A
X, = {(z—Re") (z—Re "y ( S Re ) v = 3%‘“"‘ (27)

The remaining constants 4 ... 4, and 8 ... B, are determined from the second set of
boundary conditions mentioned in Section 3.2 for the points at infinity and at the origin.
An long and cumbersome calculation gives the following

(1) if only thermal stresses and internal pressure are present:
9‘(:) = An‘

otk pCt—f5) (
3 7

Wizy= - — [z = R{cos{+ 2ysin LYz

1+
+#m<&+l+;&>ﬂ'lﬁ

L+ fi g o . s
aat T 7/ (3, — N — Tz — Ricos T+ 27 sin )X ()

1+ f . C ey
— (1 +x34) —3/ Aglz— R(cos{+2y8in )Y, (2),

pll=(cos{+2ysind)e | —A,

= 2, +f

(=T m[ e

1 ]+ﬂl+’\:
k v l+1 |- l—fz‘
ep e TS

S{cos o+ sin;)]

D

F{cos {4+ 2psin )

where the Dundurs’ material parameters x and ff were used again;

(2) if only stresses at infinity are acling:
Qy=a+

. (g ) (1)
W) = ——5 5 yh_ [z~ R(cos{+ 27sin )]

h, - B
- -3}é {z{cos{—2ysin{)}— R]} Xo(2).
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1 1+ vy
_l?‘+1(v +Ny) — ET‘%‘V' No)[1+45%] sin ¢ cos (20)
b—i-
3+ 1+f . 5
‘{:;‘**l“‘:ge (COSs“f‘ Slng)
11 v e e e g
a l+;(N, N)[1+457]sin ¢ sin (20)
+i [+5 _ .
14+ ——e ¥ (cos{+2ysin{)
-8
R 1+ e s
b1=_" 1+B(N| )C’ e,
“EITI T T i—w
R’ s
a = - ~4”(Nl —Ny)e™. 29

3.5, Determination of the stress intensity factors
Following Rice (1988) the SIFs of a J-crack can be defined as follows

K(Re%) =limr? /21 (0, ~ia,),  K(Re™) = K(Re ™), (30)
where ris a small radial distance at the interface in front of cach crack tip, and o, and a,4

denote the stresses directly at the interface, which in terms of the stress function are given
by (Miiller ¢ al., in preparation () :

; _ 2 . Ty 5 ]+[;"
””*”""“u.mk.[ G ;t./t:(aﬂr,*/‘1:>(T—TR)]- (31)

Hence, we obtain with eqns (28) and (29):

(1) for a pressurized 3-crack under the influence of residual thermal stresses

-z { I+2~24 &}

2 +
. I-p (l-—cc)(l+[!) 1+f —_ .
K(Re*) = 3+1 |~ (1 ._2;'?) I,ZRSinCc—s}*cf(sll«}—;'!n(ZRsm\n‘
T L T et W e T Y ain Y
Lpp T aopS (oSt sing
K(Re ™ ) = K(Re5), (32)

where &, characterizes the thermal mismatch:

Iy - .
(X, =2 ) (T—~Tp); (33

Ly =
th l+l\':

{2) for a J-crack under the influence of stresses at infinity :

K(Re™) = (., —h,c"} (1 =2iy) /aRsin ¢~ eW2erin2Ran  g(Re-%) = K(Rev),
(33)

where b _, and b, arc specified in cqns (29) 5.
By superposition of both results the interaction between thermal and mechanical loads

can now be studied. For a detailed discussion of special cases and the interaction see Miller
et al. (in preparation {c)).
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4. CONCLUSIONS

Stresses and stress intensity factors have been calculated for r- and 3-cracks in fiber-
reinforced materials under thermal and mechanical loading. A numerical solution has been
obtained for the r-cracks on the basis of singular integral equations whereas in the case of
J-cracks it was possible to obtain analytical results.
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